Map Marker
Off

Egg and larval fish drifting downstream are likely to encounter river infrastructure leading to mortality. Elevated fluid shear is one likely cause. To confirm this and determine tolerable strain rates resulting from fluid shear, egg and larvae of three Australian species were exposed to a high-velocity, submerged jet in a laboratory flume. Mortality was modelled over a broad range of strain rates, allowing critical thresholds to be estimated.

One-way connectivity maintained by fish passing through hydropower turbines in fragmented rivers can be important to population dynamics, but can also introduce a new and significant source of mortality. Sources of mortality during turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes.

American eel are likely to encounter and pass through hydropower turbines, particularly during the downstream spawning migration, where exposure to stressors can potentially lead to injuries and mortality. Previous research has recovered dead eels downstream of hydropower facilities and, for some fish, injuries were easily attributed to blade strike; however, others showed no external signs of injury suggesting that other stressors, such as rapid decompression may be a potential source of mortality.

Global hydropower development is one solution proposed to address the increase in energy needs. However, hydropower-related impacts on riverine ecological systems are not well understood. The Mekong River Basin (MRB) is one of the world’s largest waterways and is presently experiencing significant hydropower expansion. It is also one of the most biodiverse rivers; serving as home to many species that are blocked or hindered by the development of dams.

Hydropower is the most common form of renewable energy, and countries worldwide are considering expanding hydropower to new areas. One of the challenges of hydropower deployment is mitigation of the environmental impacts including water quality, habitat alterations, and ecosystem connectivity. For fish species that inhabit river systems with hydropower facilities, passage through the facility to access spawning and rearing habitats can be particularly challenging.