Quantifying mortality and injury susceptibility for two morphologically disparate fishes exposed to simulated turbine blade strike

Passage of fishes through hydropower turbines and water pumping stations may cause mortal injury as the result of exposure to blade strike impact. Laboratory trials of simulated blade strike on two morphologically distinct fishes, American eel (Anguilla rostrata) and bluegill sunfish (Lepomis macrochirus) were undertaken to assess injury and mortality rates. We hypothesized that bluegill would have comparable rates of injury and mortality to other laterally compressed fishes while anguilliform American eel would be more resistant to injury. American eel had low observed mortality rates at the highest velocity tested (13.6 m/s), but many fish were observed with vertebral fractures which we categorized as functionally dead individuals. Bluegill were more susceptible to blade strike with high rates of mortality regardless of blade thickness, velocity, or impact conditions (location, angle, or fish orientation). These data have broadened our understanding of the range of responses among entrained fishes exposed to blade strike and represent species with low (American eel) and high (bluegill) susceptibility to injury and mortality. Our blade strike data can help inform safer turbine designs or prioritization of pumps that minimize traumatic injury and mortality of fishes during non-volitional passage through hydropower turbines or water pumping stations.

Authors: Saylor R, et al.

Journal: Hydrobiologia

Link: https://link.springer.com/article/10.1007/s10750-019-04026-x

Funding Source:  Department of Energy's Water Power Technologies Office


Report Type
Journal Article